基于稀少控制点的资源三号影像正射纠正精度分析

陈世培,张利平,赵淑玲,关 雷

(黑龙江第三测绘工程院 黑龙江 哈尔滨 150025)

摘 要: "资源三号"卫星是我国第一颗民用高分辨率立体测绘卫星,集测绘和资源调查功能于一体,主要用于 1:50 000比例尺测绘产品生产,1:25 000 及更大比例尺测绘产品的修测和更新。本文主要研究控制点的数量和 分布对纠正精度的影响,实现利用最少的控制点达到较好的精度,以及为边境地区布点提供参考依据。 关键词:资源三号;正射纠正;稀少控制点

中图分类号: P231 文献标识码: B 文章编号: 1672 - 5867(2013) 12 - 0064 - 04

GCP Scarce ZY – 3 Image Ortho Rectification Based on the Precision Analysis

CHEN Shi – pei , ZHANG Li – ping , ZHAO Shu – ling , GUAN Lei (The Third Heilongjiang Surveying and Mapping Engineering Institute , Harbin 150025 , China)

Abstract: "ZY - 3" satellite is China's first civilian high resolution stereo mapping satellites , set mapping and resource investigation functions in one , mainly for the 1:50 000 scale surveying and mapping products , revision and update 1:25 000 and larger scale of Surveying and mapping products. This paper mainly studies the influence of the number and distribution of control points on the correction precision , using the least control points to achieve better accuracy , as well as the border area layout to provide reference. **Key words**: ZY - 3; ortho rectification; GCP scarce

0 引 言

外业实测 GPS 控制点虽然获取的精度高,但所需的 人力较多,耗费的时间相对较长。在无控制条件下,"资 源三号"卫星影像就可以达到较高的几何精度,平面精度 能达到 15 m,采用少量控制点能提高不少精度,在完全满 足各类应用需求的条件下,可以减少对地面控制点数量 的要求,从而节约了成本,提高了效率。因此,研究稀少 控制点的分布和数量对其纠正精度的影响有一定的实际 意义,为边境地区控制点的布设方案提供依据。

1 实验资料情况

1.1 资源三号卫星影像概况

"资源三号"卫星于 2012 年 1 月 9 日在太原卫星发 射中心发射成功,可对地球南北纬 84 度以内的地区实现 无缝影像覆盖,每 59 天覆盖一次。"资源三号"卫星共搭 载 4 台相机 幅宽优于 50 km,其中星上装载的三线阵相 机可以获取 2.1 m 地面像元分辨率(正视相机)和 3.5 m 地面像元分辨率(前/后视相机)全色影像,完成立体测绘 功能;多光谱相机获取5.8 m 地面像元分辨率多光谱影 像,包含红、绿、蓝和红外4个谱段,主要用于影像融合和 图像判读解释。

本次实验采用的资源三号影像为正视影像,产品带 有 RPC 参数。

1.2 实验区及资料情况

实验区位于黑龙江省绥化地区,地形为平地。本次 实验采用1景"资源三号"原始影像,DEM数据为 1:50 000DEM 控制点和检查点均为外业实测 GPS 点,外 业实测 GPS 点的精度优于 0.5 m。

1.3 工作平台

纠正平台为 erdas9.2。

2 影像正射纠正

2.1 正射纠正方法

根据控制点的不同获取方式,将有理函数模型的建 立分为"依于地形"和"独立于地形"两种方案,所谓"依

收稿日期:2013-10-08

基金项目:黑龙江测绘地理信息局基础测绘科技基金项目省测绘生产技术试验(201203)资助

作者简介:陈世培(1960 -),男,四川咸阳人,高级工程师,硕士,2001年毕业于武汉大学测绘工程专业,主要从事测绘生产质量管理工作。

赖于地形"的方案是指利用从地图上采集或野外控制测 量等手段获取地面控制点直接解算即 RPC,完全决定于 实际的地形起伏以及控制点的数量与分布 "独立于地 形"的方式,即首先利用星载 GPS 测定的卫星轨道参数及 恒星相机、惯性测量单元测定的姿态参数建立严格几何 模型;之后,利用严格模型生成大量均匀分布的虚拟地面 控制点,再利用这些控制点计算 RPC 模型参数,其实质是 利用 RPC 模型拟合严格几何模型。

本次试验采用的是有理函数模型进行正射纠正,由 于研究的是稀少控制点,"依于地形"方式的模型解算至 少需要5个控制点,本次实验采用稀少控制点进行纠正实 验,采用的纠正方式是"独立于地形"的方式。

2.2 纠正控制点和检查点的选取

本次实验所有控制点和检查点均采用外业实测控制 点 控制点的选择要遵循如下原则和要求:

 1) 首选是选在接近正交的宽度比较小的道路交口中 心 或者是小路和大路交会处小路的中心点;

2) 其次是选在其它线状地物的交叉处,能准确定位的拐角和点状地物中心;

3) GPS 实测检查点均匀分布 检查影像纠正精度。

3 纠正精度分析

本次实验采用 13 个 GPS 点中部分控制点进行纠正

实验,并用这13个点进行纠正精度分析,其分布位置示意 图如图1所示。

图 1 GPS 点分布图 Fig. 1 Distribution of GPS points

3.1 单点纠正精度分析

单点纠正实验分别采用9种方案,分别采用不同点位的1个控制点对资源三号影像进行纠正。其方案表和精度分析见表12。

	方案1	方案2	方案3	方案4	方案 5	方案6	方案7	方案 8	方案9
纠正点号	D01	D02	D03	D04	D05	D06	D07	D08	D09
			_						
		TT-	表 1、2、41…	₹2 単点纠	止精度分析	表 · · ·	4 - 3		
		18	b. 2 Analy	sis of single	– point pred	cision correc	tea		
点号	方案1	方案2	方案3	方案4	方案5	方案6	方案7	方案8	方案9
D01	0.22	5.20	10.97	1.62	7.42	9.71	3.34	3.74	10.69
D02	3.69	1.41	6.17	5.51	1.25	4.75	6.61	1.04	6.49
D03	11.14	6.12	0.24	14.88	4.16	1.48	15.71	7.18	1.61
D04	2.33	3.71	10.60	0.43	6.59	7.67	3.48	3.30	11.02
D05	7.55	3.00	3.32	10.05	0.27	1.74	9.81	4.72	3.95
D06	11.02	5.54	1.39	12.32	2.79	0.99	13.37	6.84	1.66
D07	2.66	7.86	14.79	1.22	8.72	12.66	1.63	6.71	14.58
D08	3.62	1.18	7.84	5.10	3.98	5.89	6.54	0.58	8.40
D09	11.22	6.53	2.06	13.19	3.29	2.98	13.71	7.19	0.76
D10	0.88	4.23	12.22	1.26	7.08	9.84	2.03	3.06	11.73
D11	9.25	4.01	2.79	11.18	1.22	2.67	11.01	5.68	1.27
D12	3.45	0.86	6.97	4.19	2.14	6.10	5.94	1.08	8.01
D13	9.56	4.44	1.07	12.07	1.19	2.90	12.60	6.64	0.82
中误差	7.11	4.64	7.72	8.76	4.69	6.42	9.37	5.04	7.78
最大差值	11.22	7.86	14.79	14.88	8.72	12.66	15.71	7.19	14.58

表1 单点纠正方案设计表

 Tab. 1
 Single – point corrective program design table

从表2可以看出:

1) 采用单点纠正时 离控制点距离越远 检查点的误 差越大;检查点沿轨道方向上的误差比较小 检查点在垂 直轨道方向上的误差比较大。

2) 采用单点纠正时,采用控制点分布在沿轨道方向 上中间时 影像纠正精度最好;单点纠正最大误差均小于

25 m,中误差均小于12.5 m,均能满足1:25 000 的正射影 像纠正精度。

3.2 双点纠正

双点纠正实验分别采用8种方案,分别采用不同点位 的2个控制点对资源三号影像进行纠正。其方案表和精 度分析见表34。

表3 双点纠正方案设计表 Tab. 3 Two – point corrective program design table

			··· F		r			
方案	方案1	方案2	方案3	方案4	方案5	方案6	方案7	方案8
纠正点号	D01 ,D09	D03 ,D07	D01 ,D03	D01 ,D07	D03 ,D09	D07 ,D09	D04 ,D06	D02 ,D08

		Tab. 4	4 Accuracya	nalysis of two	– point correc	ted table		
点号	方案1	方案2	方案3	方案4	方案5	方案6	方案7	方案8
D01	5.88	4.21	5.70	1.00	11.82	3.86	3.63	3.20
D02	0.35	0.75	0.55	5.09	5.29	1.30	0.49	0.95
D03	5.26	7.18	5.73	12.82	0.62	7.49	6.75	7.30
D04	5.10	4.62	4.84	2.42	10.77	4.12	2.58	2.56
D05	1.89	3.03	1.64	8.87	4.33	2.83	3.14	3.64
D06	5.41	6.59	4.98	12.46	0.77	6.00	6.14	6.14
D07	8.82	6.87	8.83	2.18	15.07	6.77	6.37	6.04
D08	1.75	1.89	1.56	4.67	7.59	0.91	0.23	0.88
D09	5.38	6.74	5.33	12.24	0.71	6.42	7.30	6.08
D10	4.69	4.35	5.17	1.53	10.70	4.23	2.89	3.51
D11	3.50	4.87	2.45	10.69	1.65	4.06	5.22	5.07
D12	1.41	1.25	2.14	3.98	7.17	1.00	0.89	0.61
D13	4.13	6.29	4.59	11.87	0.71	5.98	6.04	5.45
中误差	4.68	4.99	4.67	8.23	7.63	4.75	4.64	4.51
最大差值	8.82	7.18	8.83	12.82	15.07	7.49	7.30	7.30

表4 双点纠正精度分析表

ab. 4	Accuracyanalysis	of two – poir	nt corrected	table

从表4 可以看出: 当控制点垂直轨道方向和成对角分 布时,误差分布是影像中间误差小,影像边缘误差大;当 控制点分布沿轨道方向时 ,误差分布是离控制点距离越 远 误差越大。

3.3 三点纠正

三点纠正实验分别采用8种方案 分别采用不同点位 的3个控制点对资源三号影像进行纠正,采用零阶和一阶 多项式平差模型改正 RPC 参数的系统误差 其方案表和 精度分析见表 5 fo。

表5 三点纠正方案设计表

Tab	6.5 Thr	ee – poin	t correcti	ive progr	am desig	n table
方案	方案1	方案2	方案3	方案4	方案5	方案6
纠正	D01 ,D03 , D07 零阶	D01 ,D03 , D08 零阶	D01 ,D02 , D04 零阶	D01 ,D03 , D07 一阶	D01 ,D03 , D08 一阶	D01 ,D02 D04 一阶
点亏	改正	改正	改正	改正	改正	改正

表6 三点纠正精度分析表

Tab. 6 Accuracyanalysis of three – point corrected table

点号	方案1	方案2	方案3	方案4	方案 5	方案6
D01	2.60	4.44	1.73	0.77	0.94	0.45
D02	1.68	1.14	2.72	0.29	0.75	1.03
D03	7.31	4.36	10.70	0.74	0.53	1.60
D04	3.14	5.98	1.39	2.42	2.10	0.78
D05	5.39	3.05	7.08	4.93	3.56	4.13
D06	7.53	6.22	10.11	1.44	0.93	2.44
D07	4.91	7.79	6.00	1.14	2.37	7.27
D08	1.62	1.11	0.55	0.70	1.11	5.10
D09	7.69	6.52	9.68	3.21	1.53	6.62
D10	2.82	5.10	0.70	1.18	1.45	1.70
D11	6.16	4.45	8.76	1.35	0.80	3.37
D12	2.28	0.67	2.36	2.43	0.94	2.06
D13	7.34	4.80	9.09	2.98	2.28	4.69
中误差	5.19	4.78	6.65	2.21	1.7	3.83
最大差值	7.69	7.79	10.70	4.93	3.56	7.27

3.4 四点纠正

四点纠正实验分别采用 10 种方案,分别采用不同点 位的四个控制点对资源三号影像进行纠正,采用零阶和 一阶多项式平差模型改正 RPC 参数的系统误差,其方案 表和精度分析见表7 8。

表7 四点纠正方案设计表

Tab.7 Fo	ur – point	corrective	program	design	table
----------	------------	------------	---------	--------	-------

方案	方案1	方案2	方案3	方案4	方案5	方案6	方案7	方案8	方案9	方案10
和正	D01 ,D02 ,	D01 ,D02 ,	D01 ,D03 ,	D01 ,D03 ,	D02 ,D04 ,	D01 ,D02 ,	D01 ,D02 ,	D01 ,D03 ,	D01 ,D03 ,	D02 ,D04 ,
ᅿᇿ	D04 ,D05	D07 ,D08	D04 ,D06	D07 ,D09	D06 ,D08	D04 ,D05	D07 ,D08	D04 ,D06	D07 ,D09	D06 ,D08
从与	零阶改正	零阶改正	零阶改正	零阶改正	零阶改正	一阶改正	一阶改正	一阶改正	一阶改正	一阶改正

rusto recuracyularysis of four point corrected table										
	方案1	方案 2	方案3	方案4	方案5	方案6	方案7	方案8	方案9	方案 10
D01	3.23	1.50	4.95	5.45	4.44	1.41	0.35	0.87	1.21	1.27
D02	1.68	2.13	0.76	2.12	0.66	1.65	0.95	1.64	1.11	0.64
D03	7.56	9.12	6.64	4.94	5.77	2.06	0.78	0.94	0.88	1.05
D04	2.74	1.41	4.19	4.90	4.12	1.14	1.84	2.04	1.92	1.58
D05	4.84	6.20	2.64	2.73	3.69	0.97	4.39	5.47	3.45	4.74
D06	8.11	9.69	5.99	5.92	5.92	3.23	0.83	1.44	1.26	1.56
D07	6.44	4.39	8.81	9.14	8.41	5.88	1.11	3.28	1.68	1.65
D08	0.97	1.88	1.25	2.37	1.48	4.79	0.42	1.28	1.83	0.96
D09	8.14	9.77	6.42	6.47	7.23	6.41	4.05	5.81	1.32	3.19
D10	2.23	0.82	3.91	4.20	3.34	2.31	1.50	1.18	2.22	0.84
D11	6.30	7.62	3.96	3.43	5.12	3.22	1.71	1.25	1.29	1.78
D12	0.16	1.48	1.24	1.39	1.05	1.14	1.44	3.18	1.90	1.13
D13	7.02	9.34	5.04	4.44	5.19	2.18	3.06	3.55	1.21	2.86
中误差	5.33	6.15	4.87	4.86	4.88	3.31	2.14	2.94	1.76	2.11
最大差值	8.14	9.77	8.81	9.14	8.41	6.41	4.39	5.81	3.45	4.74

表 8 四点纠正精度分析表 Tab. 8 Accuracyanalysis of four – point corrected table

从表 8 可以看出:用一阶改正比零阶改正纠正精度 高;采用均匀分布四个控制点并采用一阶改正纠正时,纠 正最大误差小于 10 m,中误差小于 5 m,能满足 1:10 000 的影像纠正精度;当控制点分布在一定区域时,控制点能 控制一定范围的影像精度。

4 结束语

从实验结果看,采用1个控制点对资源三号影像进行 纠正就能满足1:25 000 正射影像纠正精度。采用一个控 制点纠正时,控制点位于影像中间纠正精度较好;采用两 个控制点时,控制点垂直轨道方向和成对角分布纠正精 度较好;采用三个和四个控制点时,控制点均匀分布,纠 正方式采用一阶多项式平差模型改正纠正精度较好,且 满足1:10 000 正射影像纠正精度。控制点能控制控制点 连线一定范围外影像的纠正,对于边境地区以及控制点 无法获取区域 在能测量控制点的范围至少要布设3个控制点 尽量均匀布设。

参考文献:

- [1] 刘军,工冬红,毛国苗.基于 RPC 模型的 IKONOS 卫星影 像高精度立体定位[J]. 测绘通报 2004(9):1-3.
- [2] 万里红 杨武年 李天华 ,等. 浅谈 QuickBird 遥感卫星影 像几何精校正[J]. 测绘与空间地理信息 2007 30(2): 12-15.
- [3] 张永生 巩丹超. 高分辨率遥感卫星应用───成像模型、 处理算法及应用技术 [M]. 北京: 科学出版社 2004.
- [4] 展昀. QuickBird 高分辨率影像物理模型与 RPC 模型的 定位精度分析 [M]. 上海: 同济大学 2008.

[编辑:孔 静]