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Abstract:
spatial association rules and spatial outliers in spatial datasets. Currently most spatial clustering algorithms cannot obtain satis-

Spatial clustering is an important tool for spatial data mining and spatial analysis. It can be used to discover the

fied clustering results in the case that the spatial entities distribute in different densities, and therefore more input parameters are
required. To overcome these limitations, a novel data field for spatial clustering, called aggregation field, is first of all developed
in this paper. Then a novel concept of aggregation force is utilized to measure the degree of aggregation among the entities.
Further, a field-theory based spatial clustering algorithm (FTSC in abbreviation) is proposed. This algorithm does not involve
the setting of input parameters, and a series of iterative strategies are implemented to obtain different clusters according to vari-
ous spatial distributions. Indeed, the FTSC algorithm can adapt to the change of local densities among spatial entities. Finally,
two experiments are designed to illustrate the advantages of the FTSC algorithm. The practical experiment indicates that FTSC
algorithm can effectively discover local aggregation patterns. The comparative experiment is made to further demonstrate the
FTSC algorithm superior than classic DBSCAN algorithm. The results of the two experiments show that the FTSC algorithm is
very robust and suitable to discover the clusters with different shapes.

Key words: spatial clustering, aggregation force, field theory, spatial data mining

CLC number: P208 Document code: A

Citation format: Deng M, Liu Q L, Li G Q and Cheng T. 2010. Field-theory based spatial clustering method. Journal of Remote Sensing.

14(4): 694—709

1 INTRODUCTION

Spatial clustering is an important means for spatial data
mining and spatial analysis, and it can be used to discover the
potential rules and outliers hidden in the spatial data. Currently,
spatial clustering technology has widespread applications in
various fields, such as geography, geology, cartography, remote
sensing, biology, economics (Blackman & Popoli, 1999;
Bar-shalom & Blair, 2000; Hofmann-wellenhof et al., 1994;
Mao & Li, 2004).

Through the analysis of literature, current spatial clustering
algorithms can be roughly classified into five categories:
(1) partitioning algorithms, such as k-Means (Macqueen, 1967),
k-Mediods (Ng & Han, 1994) and FCM (Dave & Bhaswan,
1992); (2) hierarchical algorithms, like BIRCH (Zhang et al.,
1994), CURE (Guha et al., 1998) CHAMELEON (Karypis et
al., 1999), ROCK (Guha et al., 1999) and gravity-based algo-
rithms (Wright, 1977; Gan, 2006); (3) density-based algorithms,
including DBSCAN (Ester et al., 1996), VDBSCAN (Liu et al.,
2007), OPTICS (Ankerst et al., 1999), ADBSC (Li, 2009) and
DDBSC (Li, 2008); (4) graph-based algorithms, as ZEMST
(Zahn, 1971), SEMST (Paivinen, 2005), AUTOCLUST (Estiv-
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ill-Castro & Lee, 2000); and (5) mixed spatial clustering algo-
rithms, such as STING (Wang et al.,, 1997), Wave Cluster
(Sheikholeslami et al., 1998), CLIQUE (Agrawal et al., 1998),
GDCIC (Song & Ying, 2006) and NN-Density (Pei et al.,
2006).

Partitioning algorithms begin with an initial partition into k&
clusters and then optimize the criterion function via an iterative
control strategy. The iterative process ends until the value of
criterion function makes convergence to a given threshold. The
partitioning algorithms seriously rely on the input parameters
(i.e. the settings of the cluster number) and the initial centers. In
addition, the algorithms are very sensitive to noise and cannot
discover clusters with different shapes. Hierarchical algorithms
usually create a hierarchical decomposition for a given spatial
database. A dendrogram which splits the database iteratively
into small subsets is usually used to represent the hierarchy. The
dendrogram can be formed through agglomerative approach or
divisive approach. The former begins with each point which is
viewed as an individual cluster, and then the points or clusters
are successively merged until a predefined condition holds or
all the points are merged into one cluster. The latter starts with
all the points into one cluster, then the cluster is hierarchically
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split into smaller ones until a predefined condition holds or
each point in one cluster. However, the input parameters have a
significantly influence on the clustering results. Particularly,
these parameters are hard to determine. Additionally, the hier-
archical algorithms cannot work well in the case that there is a
distinct difference among the local density of the spatial data-
sets. Density-based algorithms try to identify the clusters due to
the idea that the density of the points within each cluster is
considerably higher than that outside the cluster. The algorithms
can discover clusters of arbitrary shapes, and can be used to
filter outliers. However, the input parameters of the algorithms
are usually fixed, which directly lead to unsatisfied clustering
results when the spatial entities distribute in different densities.
Moreover, there is not an effective method to set the parameter
and threshold without
Graph-based algorithms firstly construct a graph. Each point is

sufficient priori  information.
represented as a vertex and edges connect pairs of points. Then,
a series of sub graphs are generated by removing uninteresting
edges on the basis of a certain criterion function, and each of
them may be regarded as a cluster. These uninteresting edges
are usually the significantly long or short edges, but actually,
these edges are hard to find in the case of the uneven distribu-
tion in spatial database. Mixed spatial clustering algorithms
usually work with the combination of different clustering algo-
rithms. Likewise, the mixed algorithms cannot overcome the
limitations discussed above. In addition, the clustering quality
would be reduced, such as the STING algorithm.

For existing spatial clustering algorithms, two aspects of
limitations can be summarized. On the one hand, the spatial
distribution of the spatial entities is not fully considered, so that
it is almost impossible for existing clustering algorithms to
obtain satisfied clustering results in the case that the spatial
entities distribute in different densities. On the other hand, more
input parameters are required, but the establishment basis for
each parameter is unclear. In order to overcome these limita-
tions, the data field theory is firstly employed to describe the
issue of spatial clustering, where a novel data field for spatial
clustering is developed by means of Voronoi diagram and Delaunay
triangulation. Then, a new concept of clustering measurement,
called aggregation force, is developed. Further, a field-theory
based spatial clustering algorithm (FTSC in abbreviation) is
proposed. Compared with exiting spatial clustering algorithms,
FTSC algorithm has two aspects of advantages. Firstly, the
algorithm can adapt to the change of local density among spa-
tial entities and can discover clusters with different shapes ef-
fectively and steadily. Secondly, the algorithm does not involve
the setting of input parameters.

2 PRINCIPLE AND DESCRIPTION OF THE SPATIAL
CLUSTERING ALGORITHM BASED ON FIELD
THEORY

The goal of spatial clustering is to classify the entities of a

database into a set of meaningful subclasses, in which the enti-
ties are similar to each other in geometry (e.g. shape, size) and
the entities of different subclasses are of large dissimilarity.
Currently, the geometrical distance, such as Euclidean distance,
is frequently used to measure the similarity and dissimilarity
during spatial clustering procedure (Kovacs et al., 2006). A
clear physical meaning for spatial clustering processes and
results are also lack. Enlightened by the field theory in physics,
the data field theory is employed to describe the mechanism of
spatial clustering (to be discussed in detail in the next section)
in this paper. A novel data field, called aggregation field is
firstly developed for spatial clustering.

2.1 Aggregation field and aggregation force

From the physical point of view, each data can be assumed
to have its energy, and the energy of data can radiate to the
whole space. Therefore the space which receives the energy is
called aggregation field (Wang, 2002). The aggregation field
here is a kind of data field; which is further defined as an active
vector field. Each entity can be viewed as a source of the aggre-
gation field, also called aggregation field source. It is assumed
that each entity in the aggregation field is influenced by the
source with an aggregation force. Thus, the mechanism of spa-
tial clustering can be described as follows:

(1) Each source generates an aggregation field, and each entity
in that aggregation field is attracted by the source with an aggre-
gation force.

(2) Each cluster is formed from a source whose attractive
ability is powerful. Then, each entity attracts other entities in
turns until a cluster is contributed.

(3) The aggregation force acted on an entity in a cluster is
powerful. The aggregation force acted on an outlier is signifi-
cantly small.

The spatial distribution of the aggregation field can be repre-
sented by the vector field-strength function. Generally, short-
rang field is proper for spatial clustering (Gan et al., 2006), that
is to say, the field-strength of a data field decays rapidly in a
range of distance. Thus, the exiting gravity-based methods usu-
ally employ the resistant consumption or influence factor strat-
egy, but virtually these methods are hard to achieve. In this
paper, the Voronoi diagram and Delaunay triangulation are
employed to define the field-strength function of the aggrega-
tion field. In the following, some related concepts are firstly
explained.

Definition 1: Given spatial entities set P, P= {p1, ps, ps...,
Dn}s VDi
2002):

p'=lx | d@. p) < d(x. p)). p pEP. i#.xER% (1)
where, d denotes the Euclidean distance function. The Voronoi

P, the Voronoi diagram of p; is defined as (Chen,

diagram of set P is formed by the Voronoi diagram of all the
entities in set P, which is denoted by PY. That is the diagram
bounded by the real line, as shown in Fig. 1. It can be expressed
as:
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PY={p,",p."  ps, ..} 2) directly Voronoi region of that source. Out of the directly Vo-

The dual graph of PY is the Delaunay triangulation (the dot-
ted line in Fig. 1), denoted by D (P).

Fig. 1 Aggregation field

Definition 2: Given spatial entities set P, P= {p|, p,, ps...
Dn»> Vi, p;EP, if piand ij have the same Voronoi edge, p;
and p;are defined as the directly Voronoi neighborhood entities
with each other (Gold, 1992). All the directly Voronoi
neighborhood entities of an entity p; are the Delaunay neighbor-
hood of p; denoted by ND (p;). In Fig. 1, the Delaunay
neighborhood of p are the entity p, p; ps psand pe.

Definition 3: Given an spatial entity p;, the directly Voronoi
region is defined as the region formed by p”; and all the Voronoi
diagram of the entities in ND (p,), denoted as DNV(p,). In Fig. 1,
the directly Voronoi regions of p; are p,’, p,’, ps’, ps’, ps” and
pe’, respectively.

Intuitively, the construction process of Voronoi diagram can
be described as follows. Each entity in the plane can be viewed
as a core, and then each core expands to all the directions in the
same rate to form a certain region. When the regions reach each
other, the Voronoi diagram of each entity is finally formed. In
other words, the Voronoi diagram reflects the natural influence
region of each entity. According to this property, the
field-strength function of the aggregation field can be defined
as:

1,x; € DNV
1 { x; € (p) 3)

E =k——e, ,0=
P d(px)?® P [#e0x; € DNV (p)

where, E, is the field-strength of an aggregation field at a certain
spatial location x; (The aggregation field is generated by source
p); k is the radiation factor of the aggregation field, and the
value of £ is set to 1 in this paper; d(p, x;) is the Euclidean distance
between p and x;; ¢ is the attenuation factor; €px. is the unit
vector from p to x;.

In Eq. (3), one can find that the attenuation rate of the
field-strength function satisfies the square inverse relation to
the distance between the source and a certain location in the

ronoi region, the field-strength weakens rapidly, so the influ-
ence of which can be neglected. Additionally, the assumption of
the aggregation field is also consistent with the essential features
of the data field that are “independence, adjacency, ergodicity,
additively, attenuation and isotropism”. Further, the aggregation
force can be defined as follows:
1

A Mq®pg
M . _{l,qe ND(p)

d(p,q)*® """ |+w,q 2 ND(p) 4)

where, p is the source; m, is the mass of the entity g, and m, is

Fe(p.q)=E m; =k

set to 1 because the spatial entity can be regarded as the unit
particle; d(p, g) is the Euclidean distance between p and g; o is
the attenuation factor; e,, is the unit vector from p to g.

One can find from Eq. (4) that the aggregation field source
only influences the entities in its Delaunay neighborhood; the
effect on other entities can be neglected. The aggregation force
here is to some degree different from the gravitation (Wright,
1977; Gan, 2006). The former gravitation concept is a scalar,
but the aggregation force is a vector that the direction is con-
sidered. The difference between the two concepts is shown in
detail in the next section.

2.2 The principle of FTSC algorithm

Based on the aggregation field and the aggregation force
described above, the principle of FTSC algorithm can be de-
scribed as that each entity attracts the other entities in its De-
launay neighborhood with the aggregation force and each clus-
ter is constructed from a source whose attractive force is very
large. Thus, there are mainly two steps for the FTSC algorithm.
One is to discover the mechanism that an entity attracts other
ones, and the other is to find the entity whose attractive force is
maximal. In the following, the two steps will be respectively
introduced.

According to the action and reacting force principle, when
the source entity attracts other entities, these entities also attract
the source. So the direction of the cohesive force that the source
receives must point to the center of a local cluster (Li, 1999).
That is to say, the entity in the opposite direction of the cohe-
sive force can be significantly attracted by the source. The co-
hesive aggregation force that the source receives can be calcu-
lated as follows:

F, = F.(p,q).4ENDp) 5)

Further, it can be found that if the angle between the cohe-
sive force and the component aggregation force is smaller than
90°, the component force would have contribution to the cohe-
sive force, so that it can be concluded that the source attracts
the entity which causes the component aggregation force on the
source. In Fig. 2(a), entity 4 is the source, the dotted directional
line represents the cohesive force on 4 and the real directional
lines representing the component aggregation forces. Obviously,
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(a) (&)

Fig.2 Attractive operations
(a) Example of the calculation of aggregation forces; (b) Example of
boundary effect

the angle between F¢ (4, B) and Fr, the angle between F (4, C)
and Fr, the angle between F¢ (4, D) and Fr are all smaller than
90°, so the source A4 attracts the entity B, C and D. The angle
between F¢ (4, E) and Fris larger than 90°, which means F¢ (4,
E) weakens the cohesive force, so it can be considered that the
source 4 can not attract the entity E.

However, there is also a special condition, called boundary
effect in this paper. In Fig. 2(b), when the entity 4 is viewed as
a source, it is easy to find that the angle between each compo-
nent aggregation force and the cohesive force is smaller than
90°, but obviously F¢ (4, D) and F¢ (4, E) are significantly
smaller compared to the other component aggregation force.
This also means that the source should not attract them. The
reason for this case is that entity 4 is on the boundary of a clus-
ter, thus the entities in other cluster make negative influence.
For such special case, a constraint of the aggregation force scalar
is developed. The process that each entity attracts other entities
can be described as follows:

(1) Given a source p, for each entity ¢ in the Delaunay
neighborhood of p, if the angle between the cohesive force p
receives and the component aggregation force between p and ¢
is smaller than 90°, then ¢ is viewed as the candidate entity
which can be attracted by source p. All the candidate entities
form the set CNS(p), represent as:

CNS(p)={g | OFc(p. q), F)<90°,¢ ND(p) } (6)
where, 0 (Fc (p, q), Fr) represents the angle between the com-
ponent force and the cohesive force.

(2) Calculate the average aggregation force of CNS(p). It in-
cludes two steps. The first is to remove the [N/2] least compo-
nent aggregation forces; the second is to calculate the average
value of the remaining aggregation forces, denoted by E,(F).
Here symbol [] represents the rounding operation, and N is the
number of the entity in CNS (p).

(3) Filter operation. If a source locates in the interior cluster,
it can attract all the entities in CNS (p). If the source locates in
the verge of a cluster, there may be some entities in CNS(p), the
aggregation forces cause by which are significantly small. This
also means that the source can not attract them (the condition
shown in Fig. 2(b)). Through numerous experiments, a con-
straint of the aggregation force scalar is developed. That is, if
the aggregation force between an entity and the source is larger

than 1/5 of E,(F), then it means that the source can attract the
entity. Further all such entities form the set NS(p), represented
as:

NS (p)={q| | Fc(p. 9)|> E,(F)/5,q  CNS(p)} (7
where, | F¢(p, q) | represents the aggregation force scalar.
After the above procedures, in Fig. 2(b) the interference of
entity D and E can be excluded effectively. Next, how to find
the entity whose attractive ability is powerful is another impor-
tant part of FTSC algorithm. Intuitively, for a source, if the
scalar sum of aggregation force is large, the attractive ability of
the source is powerful. The scalar sum of aggregation force for
a source p can be defined as follow:

|Fr| =Y |Fe(p.9) . ND(@) ®)

In this paper, the source with powerful attractive ability is

defined as the clustering core.

Definition 4: Given spatial entities set P, set F(P) is formed
by the aggregation force scalar sum of each entity in P. The
entity, whose aggregation force scalar sum is the maximum one
in F(P), is defined as clustering Core which can be represented
as:

Core(P)=p, SF(p) = max(F(P)) ®

Then, given spatial entities set P, the clustering process
based on FTSC can be described as follows:

(1) Select the clustering core.

(2) From the clustering core, each entity attracts other enti-
ties in turns until a cluster is contributed. If a clustering only
has one entity, it will be labeled as outlier. The entities which
have been added in a cluster or identified as outliers will be
removed from set P.

(3) Repeat procedures (1) and (2) until each entity is either
added into a cluster or labeled as outlier.

According to the expression of aggregation force, if the sca-
lar sum of aggregation force for a source is large, the source
must be in the high density part of the spatial dataset. So a se-
ries of cluster can be automatically generated from the
high-density region to the low-density one. Thus the FTSC
algorithm can adapt to the change of local density among spa-
tial entities. To avoid obtaining the clusters which are too loose,
the entities are first filtered according to their aggregation force
scalar sum. If the aggregation force scalar sum of an entity is
significantly small, it can not be set as clustering core (the
operation to be discussed in detail in section 2.3).

2.3 The FTSC algorithm

SDB is the spatial database for clustering. The main steps of
implementation of the FTSC algorithm are elaborated as fol-
lows:

Step 1: Construct the Delaunay triangulation of SDB; calcu-
late the aggregation force scalar sum for each entity p;,, and
form the set F (SDB).

Step 2: Filter the entities according to aggregation force
scalar sum. If |Fr (p;)|—average (F (SDB)) is smaller than -3¢,
then the entity p; can not be set as clustering core. Where average
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(F (SDB)) represents the average value of the aggregation force
scalar sum in F (SDB), o is the variance of the aggregation
force scalar sum in F (SDB).

Step 3: Select the clustering core, and then the core attracts
other entities; form the initial cluster C.

Step 4: For each entity in cluster C which has not attracted
other entities, attract other entities and add them into the cluster
C. When all the entities in cluster C have attracted other entities,
the cluster is formed.

Step 5: If a cluster has only one entity, the entity is identified
as outlier.

Step 6: Repeat step 3 to step 5, until each entity in SDB is
either added into a cluster or labeled as outlier.

3 EXPERIMENTAL RESULTS

In this section, two experiments are utilized to verify the
feasibility and correctness of the FTSC algorithm. Four simu-
lated databases are used in the first experiment. In the second
experiment, two real-world datasets are employed. Moreover,
the experiment results are compared with the classic DBSCAN
algorithm.

3.1 Simulation experiment

In this experiment, the three simulated databases are firstly
utilized to test that the FTSC algorithm can discover clusters
with different shape and is robust with outliers. The databases
are shown in Fig.3 (a)—(c). Fig. 3 (d)—(f) show the clustering
results obtained by FTSC algorithm.

It can be found that FASC algorithm can get the same results

as DBSCAN algorithm. The result in Fig. 3(d) is the same as
the result obtained by DBSCAN with Eps=4 to 9, Minpts=1 to
11. The result in Fig. 3(e) is the same as the result obtained by
DBSCAN with Eps=4 to 6, Minpts=1 to 17. The result in Fig.
3(f) is the same as the result obtained by DBSCAN with Eps=4,
Minpts=2 to 6. From the above results, one can see that on the
one hand the FTSC algorithm can discover clusters with differ-
ent shapes as effectively as the DBSCAN algorithm; on the
other hand the algorithm is very robust, even the outliers which
are near the cluster can be identified effectively. The clusters
which are near each other can be also distinguished correctly
via FTSC algorithm. Although the DBSCAN algorithm can
obtain the same results as FTSC algorithm, the input parameters
must be strictly set. For instance, considering database 3, the
optimum result can be obtained by DBSCAN only with Eps=4.

Next, in order to test that the FTSC algorithm can automati-
cally adapt to the change of local density, database 4 is de-
signed. Fig. 4(a) shows the distribution of the dataset 4 which
contains 336 entities. 6 clusters and 13 outliers are predefined
(marked by symbol x). It can be found from Fig. 4(a) that the
spatial distribution of these entities is uneven, and the shapes of
the clusters differ widely. The clustering results by FTSC algo-
rithm is shown in Fig. 4(b). In order to illustrate the advantage
of our algorithm, a comparison experiment has been done with
the DBSCAN algorithm. The clustering results are shown in
Fig. 4(c)—(h). DBSCAN requires two input parameters, Minpts
and Eps. The optimum value of Minpts is In(#) via experiments,
where 7 is the number of points in the dataset (Birant & Kut,
2007). In this paper, we also use this optimum value of MinPts,
so the value of MinPts is set as In(336)=6.

(G

Fig. 3 Simulated databases and the clustering results obtained by FTSC algorithm (>< —outlier)
(a) Databsel; (b) Database2; (c) Database3; (d) Resultl; () Result2; (f) Result3
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Comparing the clustering results obtained by DBSCAN algo-
rithm with those by FTSC algorithm, one can find that on the
one hand the DBSCAN algorithm cannot obtain satisfied clus-
tering results in the case that the spatial entities distribute unevenly.
When the value of Eps is small, the entities in the low-density
regions are wrongly identified as outliers (Fig. 4(c)—(e)). With
the increase of Eps, clusters are hard to be distinguished, and

all the entities possibly form one cluster (Fig. 4(f) —(h)). On

the other hand, all the clusters and outliers can be correctly
identified by FTSC algorithm without any input parameter (Fig.
4 (b)). Through the experiment results above, it can also be
found that the constraint of the aggregation force scalar does
have good applicability.

3.2 Practical experiment

In order to illustrate the practicability of our FTSC algorithm,
two real-world databases, the town distribution database of
Yunnan province of China and the climate station database of
Hunan province of China are employed in this paper. The
locations of the towns and the climate stations are shown in Fig.
5(a) and (e). For comparison, the DBSCAN algorithm is also
applied to these databases for spatial clustering.

At first, the FTSC algorithm is employed to discover the local
aggregation pattern of the towns in Yunnan province. The clus-
tering result by FTSC algorithm is shown in Fig. 5(b). From the
clustering result, one can find that: (1) The DBSCAN algorithm

o

]
i

(b)

(c} (d)

(€ 0}

(2) (h)

Fig. 4 Clustering results obtained by FTSC algorithm and DBSCAN algorithm (> —outlier)

(a) Database 4; (b) Result 4; (c) Eps=3, Minpts=6; (d) Eps=5, Minpts=6; (e) Eps=7, Minpts=6; (f) Eps=9, Minpts=6; (g) Eps=11—17, Minpts=6;
(h) Eps=18, Minpts=6

(e ()

Fig. 5 Clustering results obtained by FTSC algorithm and DBSCAN algorithm (> —outlier)

(a) Towns in Yunnan province of China; (b) Result 5; (¢) Eps=60km, Minpts=5; (d) Eps=80km, Minpts=5; (e) Climate stations in Hunan province of China;
() Result 6; (g) Eps=40km, Minpts=4; (h) Eps=65km, Minpts=4
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can not discover the local aggregation pattern of the towns. In
contrary, several clusters the density of which are higher and
the distribution of which are more uniform can be discovered
through FTSC algorithm. (2) After further analyzing the clustering
results obtained by FTSC algorithm, one can discover that the
clusters, the densities of which are much higher mainly appear
around the districts of Dali, Kunming, Yuxi and Gekaimeng
(Gejiu, Kaiyuan, Mengzi). The current researches (Wu & Chen,
2007) on the development and spatial distribution of the towns
in Yunnan province show that “The towns distribute dispersal
on the whole but there are also several aggregation parts. The
towns which developed well expand from some centers, espe-
cially the surrounding area of Dali, Kunming, Yuxi and Gekai-
meng district. The level of urban development is much higher
than the average condition”. The clustering results by FTSC
algorithm are consistent with the actual situation well.

Then, the FTSC algorithm is utilized to evaluate the layout
of the climate stations in Hunan province. In order to capture
the climate character of a region, the climate stations are hoped
to distribute as even as possible. However, there are usually
some local regions in which the climate stations are too dense
or too sparse, so data from these regions may be unstable. For
further spatio-temporal data analysis, these conditions should
be fully considered. In this paper, the FTSC algorithm is em-
ployed to find the regions, the stations in which distribute in-
consistent with the whole distribution. The clustering result
generate by FTSC algorithm is performed in Fig. 5(f). From the
clustering result, it can be found that (1) all the stations mainly
form two large clusters, which indicates that the stations dis-
tribute evenly in the whole region. (2) However, there are also
some outliers and small clusters in some local regions; one can
find that the density of the stations in these regions is indeed
too low or too high compared with the global condition. For
further investigate, the stations in these regions may need to
optimize. From the clustering results by DBSCAN shown in Fig.
5(g) and (h), the local characters of the distribution of climate
stations can not be discovered.

3.3 Summary and discussion

From the above experiments, the superiority and effectively
of the FTSC algorithm are fully demonstrated. Next, the rela-
tionship between the FTSC algorithm and traditional clustering
algorithms will be discussed. The aggregation force is em-
ployed as the indicator to measure the similarity among spatial
entities in this paper. According to the definition of the aggre-
gation force, one can find that this indicator is consistent with
the former geometrical distance measurements. However, the
traditional measurements have little physical meanings; the
clustering results cannot be fully explained. Here, aggregation
force is a vector and it has clearly physical meaning, and the
directional relationships among entities are also considered.
Thus, the clustering results can be well explained. For example,
when clusters are adjacent to each other, they can be clearly
distinguished by the directions of the cohesive forces of the

entities on the boundary of the clusters.

In addition, the multi-scale and validity measurement issues
are also important parts of spatial clustering. Spatial autocorre-
lation and heterogeneity depend on scales, so the similarity
among entities changes according to different scales. For in-
stance, there are usually some small cities around the big cities.
On large scale, all the cities may form a big cluster, but on
small scale, some small cities usually construct some small
clusters. In the geographical view, it is more proper to cluster-
ing from large scale to small scale, and the traditional hierar-
chical and graph-based algorithms may be further modified to
achieve the multi-scale spatial clustering procedures. Indeed,
the spatial clustering results must be well evaluated. Current
clustering validity measurement approaches mainly use com-
pactness and separation to evaluate the clustering results that if
clusters are well separated and entities in each cluster are closed
to each other, the clustering result is good. In this paper, the
clustering results are assessed mainly according to the visuali-
zation and the prior-knowledge. In practice, a quantitative clus-
tering validity index which can measure clustering results with
arbitrary shape clusters and outliers should be further developed.
Additionally, the clustering validity measurement must consider
the multi-scale characteristics of the spatial entities.

4 CONCLUSIONS AND FUTURE WORK

Most existing spatial clustering methods cannot adapt to the
case that the entities distribute unevenly, and more predefined
parameters are required. To overcome such limitations, a
field-theory based spatial clustering algorithm (i.e. FTSC algo-
rithm) is developed in this paper. Through the simulation ex-
periment and practical experiment, and the comparison with the
classic DBSCAN algorithm, it can be concluded that: (1) the
FTSC algorithm is suitable to find the clusters with arbitrary
shapes, and is very robust; (2) the FTSC algorithm can auto-
matically adapt to the change of local density; (3) the FTSC
algorithm does not involve the setting of input parameters, so
that it can avoid too much interference from man-made factors.

The future work will be focused on the four aspects, includ-
ing: (1) to prove the setting of the constraint of the aggregation
force scalar through statistics; (2) to consider the non-spatial
attribute in spatial clustering; (3) to construct GRID index and
develop a mixed spatial clustering algorithms so as to improve
the efficiency of FTSC algorithm; (4) to develop a novel spatial
clustering validity index based on the aggregation field theory.
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